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Abstract

In this work, Entropy-Stable (ES) schemes are formulated for the multicomponent compressible Euler equations. Entropy-
conservative (EC) and ES fluxes are derived. Particular attention is paid to the limit case of zero partial densities where the
structure required by ES schemes breaks down (the entropy variables are no longer defined). It is shown that while an EC flux
is well-defined in this limit, a well-defined upwind ES flux requires appropriately averaged partial densities in the dissipation
matrix. A similar result holds for the high-order TecNO reconstruction. However, this does not prevent the numerical solution
from developing negative partial densities or internal energy. Numerical experiments were performed on one-dimensional and
two-dimensional interface and shock-interface problems. The present scheme exactly preserves stationary interfaces. On moving
interfaces, it produces spurious pressure oscillations typically observed with conservative schemes (Karni, 1994). We find that
these anomalies, which are not present in the single-component case, violate neither entropy stability nor a minimum principle
of the specific entropy. Finally, we show that the scheme is able to reproduce the physical mechanisms of the two-dimensional
shock-bubble interaction problem (Haas and Sturtevant, 1987; Quirk and Karni, 1996).
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Entropy-Stable (ES) schemes [1] have been gaining interest over the past decade, especially in the context of
under-resolved simulations of compressible turbulent flows using high-order accurate numerical methods [2–5]. ES
schemes are attractive because they provide stability in an integral sense: the total entropy of the discrete system
can be made non-decreasing (2nd principle) or conserved in which case the scheme is termed Entropy-Conservative
(EC). ES schemes were initially motivated by the fact that some hyperbolic systems of conservation laws:

∂u
∂t
+
∂f
∂x
= 0, (1)
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where u and f are the state and flux vectors, admit a convex extension [6,7] in the sense that they imply an additional
conservation equation for an entropy U :

∂U
∂t
+
∂F
∂x
= 0, (2)

where (U, F) = (U (u), F(u)) ∈ R2 is an entropy pair satisfying U T
,uf,u = F T

,u (for Eq. (1) to imply Eq. (2)) and U
is convex. Entropy functions play an important role in the stability analysis of systems of conservation laws (see [8]
and references therein). The entropy inequality:

∂U
∂t
+
∂F
∂x

< 0, (3)

considered in the sense of distributions, is typically used to eliminate non-physical weak solutions. For the compress-
ible Euler equations, this leads to the well known entropy conditions which must be satisfied across a shock [9]. Note
however that the entropy inequality (3) alone is not enough to uniquely determine the correct weak solution [10–13].

Tadmor [1] introduced finite-volume discretizations of Eq. (1) which are locally consistent with either Eq. (2)
or inequality (3) for a given entropy pair. This is achieved in two fundamental steps. First, an EC flux, which does
not introduce any entropy production or loss, is derived by solving a scalar entropy conservation condition [1].
Second, a dissipation operator is added to the EC flux in order to produce entropy across discontinuities. Despite
some developments [8,14,15], an issue that hindered the use of EC/ES schemes is the non-closed form of the
first EC flux [1] (path integral in phase space) in the general nonlinear systems case. Roe [16] addressed it by
showing, for the compressible Euler equations, how to solve the EC condition algebraically to obtain a closed-form
EC flux. Additionally, he proposed an upwind-like ES dissipation operator [16] that has become a default choice
when constructing ES schemes. From there, a number of developments followed, mostly focused on high-order
discretizations [4,5,17–19]. To the best of the authors’ knowledge, the most concrete improvement ES schemes
brought about in Computational Fluid Dynamics (CFD) is in improving the robustness of under-resolved turbulent
flow calculations using high-order methods [3–5]. Efforts are being spent on the development of code infrastructures
which take advantage of the benefits of ES schemes. An example is the eddy solver [3,20] developed at NASA Ames
Research Center for the simulation of turbulent separated flows. The present work is part of an effort to expand the
field of ES schemes towards multi-physics applications [21] and identify relevant research directions.

In this work, we consider the multicomponent (N species) compressible Euler equations consisting of the
conservation equations for partial densities, momentum and total energy. This system can be viewed as the
compressible Euler equations (conservation of total mass, momentum and total energy) complemented with N − 1
species conservation equations. This observation motivated early multicomponent schemes such as the one by
Habbal et al. [22], where the Roe scheme [23] is applied to the Euler part of the equations and the N −1 remaining
equations are treated separately. In Larrouturou [24], such approaches are termed uncoupled as opposed to fully
coupled approaches, which treat the multicomponent system as a whole. An example of a fully coupled approach
is the extension of the Roe scheme by Fernandez & Larroutouru [25], and Abgrall [26]. It might be then tempting
to use an existing entropy-stable scheme for the Euler part and evolve the remaining N − 1 species equations
with another scheme. A case in point can be found in Derigs et al. [27, section 3.8]. While this approach has the
benefit of simplicity (minimal programming and computational effort), it is lacking from a theoretical viewpoint.
This approach implicitly assumes that the entropy of the single component system is an admissible entropy for the
multicomponent system, meaning that it is a conserved quantity in the smooth regime and a convex function of the
conserved variables. The necessity of a fully coupled approach to develop entropy-stable schemes, in the sense of
Tadmor [1], for multicomponent flows is motivated by mathematical and physical arguments.

At this juncture, it is important to note that the schemes we are interested in this work achieve entropy-stability
in a specific way. That is to say that there is more than one way that a scheme can be made stable in an entropy
sense, and hence be called ‘entropy-stable’. Osher’s family of E-schemes [28] and Barth’s space–time discontinuous
Galerkin schemes [14] are conservative schemes which satisfy an entropy inequality, but their construction is
different. There are also non-conservative schemes which can be designed to conserve or produce entropy [29].
Entropy stability can be understood in a different way as well. The scheme introduced by Ma et al. [30] is termed
entropy-stable because it enforces a minimum principle of the specific entropy, proved by Tadmor for the Euler
equations [1]. In their work, stability is sought in a point-wise sense (a scheme which preserves the positivity of
density and satisfies the minimum principle cannot crash in principle), not in an integral sense. Integral stability and
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point-wise stability are both important concepts, and in principle they do not imply each other. In either case, it is
important to emphasize that the correct formulation of these schemes depends on the structure of the equations they
are applied to. Chalot et al. [31] and Giovangigli [32] demonstrated that the multicomponent compressible Euler
equations do possess the structure that ES schemes require. Additionally, a minimum principle of the mixture’s
specific entropy was recently shown in Gouasmi et al. [33]. It is not clear to the authors whether these results
extend to the systems considered in [30].

Integral entropy stability is not the only trait of ES schemes. An interesting feature of Tadmor’s framework is that
the amount of entropy produced by the scheme can be precisely quantified and controlled to some extent. Ismail
& Roe’s work on the carbuncle problem [34,35] relies on this feature to delve into the question of appropriate
entropy production across shocks. There is a sense of how entropy is being managed locally, and neither the choice
of EC flux nor the choice of dissipation operator is unique. However, this freedom in the design of the scheme
leaves the user the outstanding challenge of figuring out what is the right way to manage entropy in a discrete flow
field. This is an extremely complex question, the scope of which is by far not limited to shocks, but also includes
rarefactions [13], contact discontinuities (of relevance to this work) and the under-resolution of turbulence [36]. The
construction of our ES scheme follows a classic procedure [1,23]: from the definition of the hyperbolic system, the
entropy pair and the corresponding entropy variables, we derive the potential flux functions, a baseline EC flux [1,16]
and a scaling matrix [14,37] needed to define the entropy-stable dissipation operator of Roe [16]. Hence, our work
does not explore this question in depth, but it does provides a lucid view of how the current state of the art of ES
schemes fares in multicomponent flows.

We have come across a few obstacles during the course of this work. The first one is theoretical: the structure
required by ES schemes collapses when one of the partial densities is zero. The entropy U , which we take as the
opposite of the mixture’s thermodynamic entropy [31,32], is no longer convex and the entropy variables, which
are key in constructing ES schemes, are no longer defined. Upon closer examination, we observed that the EC
flux we derived is well-defined in this limit and still satisfies the Entropy Conservation condition. We also found
that the dissipation operator remains defined provided that the averaged partial densities involved in the dissipation
matrix are evaluated in a certain way. The second issue is that while the overall scheme is always defined, there is
no guarantee that it will not produce negative densities or pressure, even at first order, at the next time step. Last
but not least, numerical experiments showed that while the ES scheme can handle shocks and stationary contact
discontinuities correctly, it fails to preserve pressure equilibrium and constant velocity when a moving interface
is simulated. This is in fact a longtime and well-known [38,39] failure of conservative finite-volume schemes on
multicomponent flows (there are no such anomalies in the single component case). We found that these anomalies
neither violate entropy-stability nor a minimum principle on the specific entropy of the mixture [33].

The paper is organized as follows. In Section 2, we present the modeling assumptions, the governing equations
and their symmetrization using the entropy variables [31,32]. Section 3 is dedicated to the construction of ES
schemes for multicomponent flows. We formulate an EC flux and an ES interface flux based on upwinding [16,34]
and discuss their definition in the limit of vanishing partial densities. In Section 4, we discuss how this limit
impacts standard high-order ES discretizations. In Section 5, the numerical scheme is tested on one-dimensional
and two-dimensional interface and shock-interface problems.

2. Governing equations, entropy variables and symmetrization

The governing equations describe the conservation of species mass, momentum and total energy. In 1D, that is
system (1) with the vector conserved variables u and the vector of fluxes f defined by:

u :=
[
ρ1 . . . ρN ρu ρet

]T
, f :=

[
ρ1u . . . ρN u ρu2

+ p (ρet
+ p)u

]T
.

ρk denotes the partial density of species k, ρ :=
∑N

k=1 ρk denotes the total density, u denotes the velocity and et

denotes the specific total energy. The pressure p is given by the ideal gas law:

p :=
N∑

k=1

ρkrk T, rk =
R

mk
,

where mk is the molar mass of species k and R is the gas constant. The temperature T is determined by the internal
energy ρe := ρet

− (ρu)2/(2ρ) which in this work is modeled following a calorically perfect gas assumption:

ρe =
∑

k

ρkek, ek := e0k + cvk T . (4)
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For species k, e0k is a constant and cvk is the constant volume specific heat. T is computed by solving Eq. (4). An
additional conservation equation [31,32] can be derived from the governing equations:

∂ρs
∂t
+
∂ρus
∂x
= 0. (5)

ρs is the thermodynamic entropy of the mixture given by:

ρs :=
N∑

k=1

ρksk, sk := cvk ln(T )− rk ln(ρk),

where s denotes the specific entropy of the mixture and sk denotes the specific entropy of species k. Eq. (5) can be
rewritten in the form of Eq. (2) with (U, F) = (−ρs, −ρus). For ρk > 0 and T > 0, U is a convex function of
the conserved variables and (U, F) is a valid entropy pair for the multicomponent system [31,32].

At this point, we draw the attention of the reader to the difference between thermodynamic entropy ρs and
mathematical entropy U , which is a general concept proper to hyperbolic PDEs. For the Burgers equation for
instance, U = 1

2 u2 is an entropy. In our context, the mathematical entropy is the opposite of the thermodynamic
entropy, and the statement of integral entropy stability can be interpreted either as dissipation of (mathematical)
entropy or as production of (thermodynamic) entropy. We adopt the latter throughout this paper.

For systems of conservation laws with an entropy pair, Mock [40] proved that the mapping u → v where v
denotes the entropy variables defined as:

v :=
(
∂U
∂u

)T

,

symmetrizes the original system. This means that, starting from the quasi-linear form of (1):

∂u
∂t
+ A

∂u
∂x
= 0, A :=

∂f
∂u
, (6)

where A is the flux Jacobian, the change of variables u→ v turns (6) into a system of the form:

H
∂v
∂t
+ B

∂u
∂x
= 0, H :=

∂u
∂v
, B :=

∂f
∂v
= AH, (7)

where B and H are symmetric, and H is symmetric positive definite (such systems are called symmetric hyperbolic
and are well appreciated in the analysis of PDEs [6,32]). The matrices A and H will be derived in Section 3.3. For
completeness, we mention that Godunov [41] showed that the converse of Mock’s result holds as well, namely that
if there exists a mapping which symmetrizes the system, then there exists a valid entropy pair.

The fact that the entropy variables symmetrize the system (or equivalently, the fact that the matrix H symmetrizes
the flux Jacobian A from the right) will be a key component in constructing the ES dissipation operator in
Section 3.3. In addition to the entropy variables, the construction of ES schemes also involve potential functions
(U ,F) defined by:

U := v · u−U, F := v · f− F.

The potential functions satisfy the relationships:

u =
(
∂U
∂v

)T

, f =
(
∂F
∂v

)T

.

In order to derive them, we must first derive the entropy variables. Following [31,32], we use a chain rule:

∂U
∂u
=
∂U
∂Z

(
∂u
∂Z

)−1

, Z :=
[
ρ1 . . . ρN u T

]T
,

where Z denotes the vector of primitive variables. The Gibbs identity can be written as:

T d(ρs) = d(ρe)−
N∑

k=1

gkdρk, (8)
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where gk := hk − T sk is the Gibbs function of species k and hk := ek + rk T is the specific enthalpy of species k.
We have:

d(ρe) =
N∑

k=1

ekdρk + ρcvdT, ρcv :=
N∑

k=1

ρkcvk . (9)

Combining Eqs. (8) and (9), one obtains:

d(ρs) =
1
T

( N∑
k=1

(ek − gk)dρk + ρcvdT
)
.

This gives:
∂U
∂Z
=

1
T

[
(g1 − e1) . . . (gN − eN ) 0 −ρcv

]
. (10)

The Jacobian of the mapping Z → u is given by:

∂u
∂Z
=

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0

. . .
...

...

0 1 0 0
u . . . u ρ 0

e1 +
1
2 u2 . . . eN +

1
2 u2 ρu ρcv

⎤⎥⎥⎥⎥⎥⎦ . (11)

The inverse of this matrix is given by:

(
∂u
∂Z

)−1

=

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0

. . .
...

...

0 1 0 0
−uρ−1 . . . −uρ−1 ρ−1 0

( 1
2 u2
− e1)(ρcv)−1 . . . ( 1

2 u2
− eN )(ρcv)−1

−u(ρcv)−1 (ρcv)−1

⎤⎥⎥⎥⎥⎥⎦ (12)

Combining Eqs. (10) and (12) yields the entropy variables [31,32]:

v =
(
∂U
∂u

)T

=
1
T

[
g1 −

1
2 u2 . . . gN −

1
2 u2 u −1

]T
. (13)

From this expression, the potential functions (U , F) can be derived:

U =
N∑

k=1

rkρk, F =
N∑

k=1

rkρku. (14)

We conclude this section with two remarks:

1. Denote v = [v1,k . . . v1,N v2 v3]T . In order to derive the mapping from entropy variables to primitive
variables, one can first compute the temperature, velocity, Gibbs functions and specific entropies as:

T := −
1
v3
, u := −

v2

v3
, gk := −

v1,k

v3
+

1
2

(
v2

v3

)2

, sk(T, ρk) = cpk − v1,k +
1
2
v2

2

v3

The partial densities are inferred from the specific entropies:

ρk := exp
(

mk

R
(cvkln(T )− sk)

)
= exp

(
mk

R

(
−cvkln(v3)− cpk + v1,k −

1
2
v2

2

v3

))
.

The requirement that ρk > 0 and T > 0 manifests in the definition of the entropy variables, which require
the evaluation of ln(ρk) and ln(T ). On the other hand, it is interesting to note that if one works with the
entropy variables instead of the conservative variables, the requirement that ρk > 0 and T > 0 boils down
to the single requirement that v3 < 0. The remaining entropy variables can be of any sign in principle. The
authors are not aware of any physical consideration which would impose the sign of gk −

1
2 u2, namely the

difference between Gibbs energy and kinetic energy.
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2. In the compressible Euler case with e0k = 0, it is easy to show, using the ideal gas law p = ρrT and the
Mayer relation cp − cv = r that the vector of entropy variables (13) simplifies to:

v = r
[
γ−s̄
γ−1 −

ρu2

2p
ρu
p −

ρ

p

]T
, s̄ = ln p − γ ln ρ − ln r.

This differs by a constant factor r from the expression that is usually used when designing entropy stable
schemes for the compressible Euler equations (see [14,16] for instance). The trivial difference comes from
a different choice of entropy pair (U, F).

3. Formulation

The first subsection covers the definitions and fundamental results relevant to the construction of ES schemes.
The following subsections cover the details relevant to the multicomponent system.

3.1. Background

Here, the subscript j denotes the cell index, and the subscript j + 1
2 refers to the interface between cell j and

j + 1. We also use the notation [.] j+ 1
2

to refer to the jump between cell j + 1 and j .
EC and ES schemes are defined as follows:

Definition 3.1 ([1]). The finite volume scheme:
d
dt

u j (t)+
1
∆x

(f j+ 1
2
− f j− 1

2
) = 0, (15)

where f j+ 1
2

is a consistent interface flux, is called entropy conservative if it satisfies the equation:

d
dt

U (u j (t))+
1
∆x

[F j+ 1
2
− F j− 1

2
] = 0,

where F j+ 1
2

is a consistent entropy interface flux, and entropy stable if it satisfies the inequality:

d
dt

U (u j (t))+
1
∆x

[F j+ 1
2
− F j− 1

2
] < 0. (16)

The first step in the construction of an ES scheme is to construct an EC scheme, following:

Theorem 3.1 ([1]). The finite volume scheme (15) is entropy conservative if and only if the interface flux f j+ 1
2

satisfies the condition:

[v] j+ 1
2
· f j+ 1

2
= [F] j+ 1

2
, (17)

where F j = F(u j ), is the potential function evaluated at cell j . In this case, f j+ 1
2

is called an entropy-conservative
flux and the corresponding entropy flux F j+ 1

2
is given by the formula:

F j+ 1
2
=

1
2

(v j + v j+1) · f j+ 1
2
−

1
2

(F j + F j+1).

For scalar PDEs, v is a scalar and the entropy conservation condition (17) has only one solution f j+ 1
2
=

[F] j+ 1
2
/[v] j+ 1

2
. For systems, Eq. (17) does not uniquely determine the interface flux. The first two EC fluxes

proposed by Tadmor [1,8] have the inconvenience of either not having a closed-form [1] expression or being
relatively expensive to compute [8]. Using algebraic manipulations analogous to that of [23], Roe [16] proposed
a simple, closed-form EC flux for the Euler equations that is more popular. The EC flux we derive for the
multicomponent system in Section 3.2 uses the same method.

An ES scheme is built by complementing an EC scheme with appropriately defined dissipation operators as
follows:

Theorem 3.2 ([1]). The finite-volume scheme (15) with the interface flux f j+ 1
2

defined as:

f j+ 1
2
= f∗

j+ 1
2
− D j+ 1

2
[v] j+ 1

2
.
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where f ∗
j+ 1

2
satisfies the entropy conservation condition (17), and D j+ 1

2
is a positive definite matrix, satisfies

d
dt

U (u j (t))+
1
∆x

[F j+ 1
2
− F j− 1

2
] = −E j . (18)

where E j is given by:

E j =
1

2∆x
([v]T

j+ 1
2

D j+ 1
2
[v] j+ 1

2
+ [v]T

j− 1
2

D j− 1
2
[v] j− 1

2
) > 0, (19)

and is therefore entropy stable. In this case, the interface entropy flux F j+ 1
2

is given by:

F j+ 1
2
= F∗

j+ 1
2
−

1
2

(v j + v j+1)D j+ 1
2
[v] j+ 1

2
, (20)

where F∗
j+ 1

2
is the entropy flux associated with f ∗

j+ 1
2
.

Summing over all cells and assuming periodic boundary conditions leads to the integral entropy stability
statement:

d
dt

∑
j

U (u j ) = −
∑

j

E j < 0. (21)

This integral stability statement is obtained as a consequence of the local statement (18), which in itself is not a
stability statement. It does not necessarily imply for instance that in every cell j :

d
dt

U (u j ) < 0.

Looking at Eq. (18), we see that the local variation of U in time depends on both E j , which is determined by the
dissipation operator, and the interface entropy flux F j+ 1

2
, which according to Eq. (20) is determined by both the

EC flux and the dissipation operator.
The second principle of thermodynamics is often invoked to defend the consistency of ES schemes with physics.

First, this principle only applies to closed systems, hence it can hardly be invoked when the boundary conditions
are non-trivial. Second, the second principle is not a local statement. This means that it does not explicitly support
the local inequality (16).

3.2. Entropy-conservative flux

In compact notation, the entropy conservation condition (17) writes:

[v] · f∗ = [F], (22)

where f∗ = [ f1,1 . . . f1,N f2 f3] denotes the interface flux. Define the set of algebraic variables:

z =
[
ρ1 . . . ρN u 1

T

]
=

[
z1,1 . . . z1,N z2 z3

]
.

The first step of Roe’s technique [16] consists in rewriting the jump terms in Eq. (22) as linear combinations of the
jumps in the algebraic variables. For a given quantity a, let a and aln be the arithmetic and logarithmic averages,
respectively:

a =
1
2

(aL + aR), aln
=

⎧⎪⎨⎪⎩
aL , if aL = aR

0, if aL = 0 or aR = 0
aR−aL

ln(aR )−ln(aL ) , else

Note the identities:

[ab] = a[b]+ b[a], and [ln(a)] = [a]/aln.

The jump in the potential function can be rewritten as:

[F] =
N∑

k=1

rk[ρku] =
( N∑

k=1

rk z1,k

)
[z2]+

N∑
k=1

rk z2[z1,k]. (23)
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For the jump in entropy variables, we need to examine the first N components. For 1 ≤ k ≤ N :

1
T

(gk−
1
2

u2) =
e0k

T
+cvk+rk−cvk ln T +rk ln(ρk)−

1
2

u2

T
= e0k z3+cvk+rk+cvk ln(z3)+rk ln(z1,k)−

1
2

z2
2z3.

The corresponding jumps then write:[
1
T

(gk −
1
2

u2)
]
= [z1,k]

rk

zln
1,k
− [z2]z2 z3 + [z3](e0k +

cvk

zln
3
−

1
2

z2
2) (24)

The remaining jumps are given by:[
u
T

]
= z3[z2]+ z2[z3],−

[
1
T

]
= −[z3]. (25)

Using Eqs. (23)–(25), the entropy conservation condition (22) can be rewritten as the requirement that a linear
combination of the jumps in the algebraic variables equals zero:

N∑
k=1

[z1,k]
(

rk

zln
1,k

f1,k

)
+ [z2]

(
(−z3 z2)

N∑
k=1

f1,k + z3 f2

)
+ [z3]

( N∑
k=1

(e0k + cvk
1

zln
3
−

1
2

z2
2) f1,k + z2 f2 − f3

)
=

[z2]
( N∑

k=1

rk z1,k

)
+

N∑
k=1

[z1,k]rk z2.

The second step turns this scalar condition into a system of N +3 equations by invoking the independence of these
jumps:

rk
1

zln
1,k
= rk z2 f1,k, 1 ≤ k ≤ N , (−z3 z2)

N∑
k=1

f1,k + z3 f2 =

( N∑
k=1

rk z1,k

)
,

N∑
k=1

(e0k + cvk
1

zln
3
−

1
2

z2
2) f1,k + z2 f2 − f3 = 0.

The solution under these assumptions is:

f1,k = z2zln
1,k,

f2 =
1
z3

( N∑
k=1

rk z1,k

)
+ z2

N∑
k=1

f1,k,

f3 =

N∑
k=1

(e0k + cvk
1

zln
3
−

1
2

z2
2) f1,k + z2 f2.

Therefore we obtain:

Theorem 3.3. The interface flux f ∗ = [ f1,1 . . . f1,N f2 f3] defined by:

f1,k = ρ
ln
k u, 1 ≤ k ≤ N

f2 =
1

1/T

( N∑
k=1

rkρk

)
+ u

N∑
k=1

f1,k, (26)

f3 =

N∑
k=1

(e0k + cvk
1

(1/T )ln
−

1
2

u2) f1,k + u f2.

is entropy conservative for the multicomponent system defined in Section 2.

This EC flux is the multicomponent version of Chandrasekhar’s EC flux [42] for the compressible Euler
equations. Chandrasekhar’s flux was designed with the additional property of being Kinetic-Energy Preserving
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(KEP) in the sense of Jameson [43], meaning that the kinetic energy equation is satisfied by the finite volume
scheme (15) in a semi-discrete sense (in the same spirit as EC schemes). This property can be useful in turbulent
flow simulations [44]. For the compressible Euler equations, Jameson [43] showed that this is achieved if the
momentum flux f ρu has the form f ρu

= p̃ + u f ρ , where f ρ is the mass flux and p̃ is any consistent pressure
average. The extension of Jameson’s analysis [43] to the multicomponent case is straightforward and it can be
showed that if the momentum flux has the same form as in the single component case (with f ρ denoting the total
mass flux), the KEP property is achieved. The EC flux we derived qualifies, with p̃ given by:

p̃ =
1

(1/T )

N∑
k=1

rkρk .

Note in passing that if [p] = 0 across the discontinuity, then p̃ defined above is exactly the pressure on each side.
The flux (26) is well-defined in the limit case ρk = 0, where the entropy variable v1,k is undefined, but is the

entropy conservation condition still met? Eq. (17) writes
N∑

k=1

[v1,k] f1,k + [v2] f2 + [v3] f3 = [F].

The jumps in v1,k are undefined because they involve jumps in ln(ρk). However, we note that the first term:

N∑
k=1

[v1,k] f1,k =

N∑
k=1

[
hk

T
−

1
2

u2

T

]
(ρln

k u) −
∑

k

[sk](ρln
k u)

=

N∑
k=1

[
hk

T
−

1
2

u2

T

]
(ρln

k u) −
∑

k

cvk[ln T ](ρln
k u)+

N∑
k=1

rk[ln ρk](ρln
k u)

=

N∑
k=1

[
hk

T
−

1
2

u2

T

]
(ρln

k u) −
∑

k

cvk[ln T ](ρln
k u)+

N∑
k=1

rk[ρk]u

is well-defined at ρk = 0, because the logarithmic averages ρln
k compensated for the logarithmic jumps [ln ρk]. We

thus find that the entropy conservation condition is satisfied even in the limit ρk = 0.
Note that the EC flux does not transfer mass across an interface separating two different species.

3.3. Entropy-stable flux

3.3.1. Upwind-type dissipation operator
Let A = RΛR−1 be an eigendecomposition of A. A popular choice for the dissipation operator consists of

recasting the upwind operator of Roe [23]→ 1
2 R|Λ|R−1[u] in terms of the entropy variables. With the differential

relation du = Hdv, this leads to:

D[v] =
1
2

R|Λ|R−1 H [v].

For the compressible Euler equations, Merriam [37, section 7.3] pointed out that there exists a scaling of the columns
of R such that H = R RT , which ultimately leads to a dissipation matrix D = R|Λ|RT which has the desirable
property of being positive definite (Theorem 3.2). Barth [14] generalized this result to hyperbolic systems with a
convex extension. The generalization takes the form of an eigenscaling theorem (Theorem 4 in [14]) which states
that for any diagonalizable matrix A symmetrized on the right by a symmetric positive definite matrix H , there
exists a symmetric block diagonal matrix T that block scales the eigenvectors R of A in such a manner that:

A = (RT )Λ(RT )T and H = (RT )(RT )T . (27)

The dimensions of the blocks of T correspond to the multiplicities of the eigenvalues of A. The second identity
in Eq. (27) provides an explicit expression for the squared scaling matrix T 2

= R−1 H R−T .
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We now proceed to derive the scaling matrix for the multicomponent Euler system. First, the flux Jacobian is
given by:

A =
∂f
∂u
=

⎡⎢⎢⎢⎢⎢⎣
u(1− Y1) . . . −uY1 Y1 0

. . .
... 0

−uYN . . . u(1− YN ) YN 0
(γ−3)

2 u2
+ d1 . . .

(γ−3)
2 u2

+ dN u(3− γ ) γ − 1
u(d1 − ht

+
u2

2 (γ − 1)) . . . u(dN − ht
+

u2

2 (γ − 1)) ht
− u2(γ − 1) uγ

⎤⎥⎥⎥⎥⎥⎦ ,

where dk = hk − γ ek and ht
= h + 1

2 u2. We have A = RΛR−1 with:

R =

⎡⎢⎢⎢⎢⎢⎣
1 0 Y1 Y1

. . .
...

...

0 1 YN YN

u . . . u u + a u − a
k − d1

γ−1 . . . k − dN
γ−1 ht

+ ua ht
− ua

⎤⎥⎥⎥⎥⎥⎦ , Λ = diag(u, . . . , u, u + a, u − a), a2
= γ rT,

where k = u2

2 . The Jacobian H of the mapping v→ u is given by [32]:

H =
∂u
∂v
=

⎡⎢⎢⎢⎢⎢⎣
ρ1/r1 0 uρ1/r1 ρ1et

1/r1
. . .

...
...

0 ρN/rN uρN/rN ρN et
N/r1

uρ1/r1 . . . uρN/rN ρT + u2 ∑N
k=1 ρk/rk u(ρT +

∑N
k=1 ρket

k/rk)
ρ1et

1/r1 . . . ρN et
N/rN uρT + u

∑N
k=1 ρket

k/rk ρT (u2
+ cvT )+

∑N
k=1 ρk(et

k)2/rk

⎤⎥⎥⎥⎥⎥⎦ , (28)

where et
k = ek + k. The squared scaling matrix is given by:

T 2
= R−1 H R−T

=
ρ

γ r
diag(T 2Y , 1/2, 1/2), (29)

where T 2Y
∈ RN×N is given by:

T 2Y
ii = (γ − 1)Y 2

i +
∑
k ̸=i

(γ rk/ri )YkYi , 1 ≤ i ≤ N ,

T 2Y
i j = − Yi Y j , 1 ≤ i ̸= j ≤ N .

At this point, the dissipation operator writes:

D[v] =
1
2

R|Λ|T 2 RT [v], (30)

and qualifies for the ES scheme because the matrix R|Λ|T 2 RT is positive definite (T 2 and |Λ| commute). However,
as will be seen in Section 4.2, a scaled form (27) of the dissipation operator is necessary.

For N = 2, we have:

T 2Y
=

[
(γ − 1)Y 2

1 + (γ r2/r1)Y1Y2 −Y1Y2

−Y1Y2 (γ − 1)Y 2
2 + (γ r1/r2)Y1Y2

]
.

T 2Y is symmetric, real-valued with non-negative eigenvalues therefore there exists T Y with the same properties
such that T 2Y

= (T Y )2
= T Y (T Y )T (T Y is the square root of T 2Y ). This matrix can be derived using an eigenvalue

decomposition. However the expression of T Y is quite complicated. The square root of T 2Y is not necessary to
proceed. For N = 2, T 2Y can be rewritten as:

T 2Y
= T Y (T Y )T , T Y

=

[
−
√

Y1Y2
√
γ r2/r1 Y1

√
γ − 1

√
Y1Y2
√
γ r1/r2 Y2

√
γ − 1

]
. (31)

T Y is not the square root of T 2Y , however it is enough to obtain a scaled formulation (27) because:

T 2
= T T T , T =

√
ρ

γ r
diag(T Y , 1/

√
2, 1/

√
2),
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and T commutes with |Λ| therefore the dissipation operator can be rewritten as:

D[v] =
1
2

(RT )|Λ|(RT )T [v]. (32)

For N > 2, the expression for T Y becomes even more complicated. For N = 3, the alternative (31) to T Y we
proposed for N = 2 becomes:

T 2Y
= T Y (T Y )T , T Y

=

⎡⎣−√Y1Y2
√
γ r2/r1 −

√
Y1Y3
√
γ r3/r1 0 −Y1

√
γ − 1

√
Y1Y2
√
γ r1/r2 0 −

√
Y2Y3
√
γ r3/r2 −Y2

√
γ − 1

0
√

Y1Y3
√
γ r1/r3

√
Y2Y3
√
γ r2/r3 −Y3

√
γ − 1

⎤⎦ .
There is one more column compared to the N = 2 case. The form (32) still holds except that RT ∈ R3×4 instead of
R3×3 and |Λ| ∈ R4×4 diagonal with an extra |u| term. For N species, the “pseudo” scaling matrix T Y we described
will be in RN×(N (N−1)/2+1).

3.3.2. Average state
To complete the definition of the dissipation operator, an average state (referred to with the superscript ∗) needs

to be specified.
We showed in Section 3.2 that the EC flux (26) is well defined in the limit ρk = 0. What about the dissipation

operator R|Λ|T 2 RT [v]? At first glance, the presence of the jump term [v] is problematic, because [v1,k] is undefined.
For N = 2, the squared scaling matrix can be rewritten as:

T 2
= T

2R, T
2
=

1
γ r

⎡⎢⎢⎣
(γ − 1)Y1 + γ r2/r1Y2 −Y2 0 0

−Y1 (γ − 1)Y2 + γ r1/r2Y1 0 0
0 0 1

2 0
0 0 0 1

2

⎤⎥⎥⎦ , R =

⎡⎢⎢⎣
ρ1 0 0 0
0 ρ2 0 0
0 0 ρ 0
0 0 0 ρ

⎤⎥⎥⎦ .
(33)

Denoting Dk = k − dk
γ−1 , we have:

RRT [v] =

⎡⎢⎢⎣
ρ∗1 0 0 0
0 ρ∗2 0 0
0 0 ρ∗ 0
0 0 0 ρ∗

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 u∗ D∗1
0 1 u∗ D∗2

Y ∗1 Y ∗2 u∗ + a∗ (ht )∗ + u∗a∗

Y ∗1 Y ∗2 u∗ − a∗ (ht )∗ − u∗a∗

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

[
v1,1

][
v1,2

][
v2

][
v3

]
⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
ρ∗1

[
v1,1

]
+ ρ∗1 u

[
v2

]
+ ρ∗1 D∗1

[
v3

]
ρ∗2

[
v1,2

]
+ ρ∗2 u

[
v2

]
+ ρ∗2 D∗2

[
v3

]
ρ∗1

[
v1,1

]
+ ρ∗2

[
v1,2

]
+ ρ∗(u∗ + a∗)

[
v2

]
+ ρ∗((ht )∗ + u∗a∗)

[
v3

]
ρ∗1

[
v1,1

]
+ ρ∗2

[
v1,2

]
+ ρ∗(u∗ − a∗)

[
v2

]
+ ρ∗((ht )∗ − u∗a∗)

[
v3

]
⎤⎥⎥⎥⎦ (34)

We can see that RRT [v] is well-defined if ρ∗k [v1,k] is well-defined as well. Given that:

ρ∗k [v1,k] =
(
−cvk[ln(T )]−

[
u2

2T

])
ρ∗k +

R
mk

[ln ρk]ρ∗k ,

we see that with ρ∗k = ρ
ln
k the dissipation operator is well-defined. For total density, one might be tempted to take

ρ∗ =
∑N

k=1 ρ
∗

k =
∑N

k=1 ρ
ln
k . This definition makes ρ∗ = 0 possible, which is undesirable given that Y ∗k = ρ

∗

k /ρ
∗.

ρ∗ = ρ ln is a safer choice.
The exact resolution of stationary contact discontinuities is a desirable property in the calculation of boundary

and shear layers (even though it might produce carbuncles on blunt-body calculations, see [45] paragraph 2.4.). In
this case, [p] = 0, [u] = u = 0 and the EC flux we derived reduces to:

f1,k = 0, f2 =
1

1/T

( N∑
k=1

R
mk
ρk

)
, f3 = 0.

From the ideal gas law we can state that f2 is exactly the pressure on both sides of the contact. The dissipation
term must therefore cancel out if we want the ES scheme to exactly preserve stationary contact discontinuities.
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Lemma 3.4. The dissipation operator given by Eq. (30) vanishes at stationary contact discontinuities if the averaged
state satisfies the relationship:

ρ∗h∗ =
N∑

k=1

ρ∗k

(
e0k + cvk

1
(1/T )ln

)
+ p, ρ∗k = ρ

ln
k . (35)

Proof. Since u = 0, we have:

RT
=

⎡⎢⎢⎢⎢⎢⎣
1 0 0 d∗1/(γ − 1)

. . .
...

...

0 1 0 d∗N/(γ − 1)
Y ∗1 . . . Y ∗N a∗ h∗

Y ∗1 . . . Y ∗N −a∗ h∗

⎤⎥⎥⎥⎥⎥⎦ , [v] =
[[ g1

T

]
. . .

[ gN
T

]
0 −

[ 1
T

]]T
,

therefore:

RT [v] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[ g1
T

]
− d∗1/(γ − 1)

[ 1
T

]
...[ gN

T

]
− d∗N/(γ − 1)

[ 1
T

]
∑N

k=1 Y ∗k
[ gk

T

]
−

[ 1
T

]
h∗∑N

k=1 Y ∗k
[ gk

T

]
−

[ 1
T

]
h∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

|u∗| = 0 so the product of the eigenvalue matrix |Λ| and the squared scaling matrix T 2 simplifies to:

|Λ|T 2
=

ρ∗a∗

2γ ∗r∗

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ .
Therefore, the dissipation term R|Λ|T 2 RT [v] cancels out if:

N∑
k=1

Y ∗k

[
gk

T

]
−

[
1
T

]
h∗ = 0.

This is equivalent to:
N∑

k=1

ρ∗k

(
e0k

[
1
T

]
−

[
sk

])
−

[
1
T

]
ρ∗h∗ = 0 (36)

Using:

−[sk] = cvk

[
1
T

]
1

(1/T )ln
+ rk

[ρk]
ρln

,

Eq. (36) can then be rewritten as:
N∑

k=1

(
ρ∗k

ρln
k

)
rk[ρk]−

[
1
T

](
ρ∗h∗ −

N∑
k=1

ρ∗k

(
e0k + cvk

1
(1/T )ln

))
= 0 (37)

The ideal gas law along with the assumption of constant pressure allows us to relate the jumps in partial densities
and temperature:

N∑
k=1

rk[ρk] = p
[

1
T

]
. (38)
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If ρ∗k = ρ
ln
k , then using Eq. (38), Eq. (37) simplifies to:[

1
T

](
p̄ +

N∑
k=1

ρ∗k

(
e0k + cvk

1
(1/T )ln

)
− ρ∗h∗

)
= 0.

This leads to the condition (35). □

The remaining averages are taken as u∗ = u, T ∗ = 1/(1/T )ln, r∗ = r̄ , γ ∗ = γ and a∗ =
√
γ ∗r∗T ∗.

3.4. Additional considerations

3.4.1. Time integration
The first-order finite volume scheme we derived is ES at the semi-discrete level only. Entropy stability or entropy

conservation at the fully discrete level can be obtained using a variety of techniques [3,8,13–15,18,46,47] which
can be applied to the multicomponent compressible Euler system. However, this typically requires implicit time-
integration schemes. For simplicity, we use explicit Runge–Kutta schemes in time, which do not guarantee entropy
stability at the fully discrete level.

For the sake of completeness, is it worthwhile to recall the two fundamental results by Tadmor [8] at the fully
discrete level. Denote λ = ∆t/∆x , and consider the Forward Euler (FE) scheme in time applied to (15):

un+1
j − un

j + λ(fn
j+ 1

2
− fn

j− 1
2
) = 0, (39)

where the interface flux can be either EC or ES. Tadmor showed that (39) implies the following equation for entropy:

U (un+1
j )−U (un

j )+ λ(Fn
j+ 1

2
− Fn

j− 1
2
) = −En

j + E F E
j , E F E

j > 0. (40)

If the interface flux is EC, En
j = 0 and the fully discrete scheme violates the entropy inequality in every cell. The

numerical solution will develop non-physical oscillations growing in time. If the interface flux is ES, then the fully
discrete entropy stability depends on the relative magnitudes of En

j (entropy production in space) and E F E (entropy
loss in time). In the scalar case, time step conditions (similar to CFL conditions) such that the fully discrete scheme
is entropy-stable can be derived [48]. The systems case is more complicated. In practice, a small enough time step
is enough to ensure that the entropy losses in time do not overtake the entropy produced in space.

Tadmor also showed that the Backward Euler (BE) scheme in time applied to (15)

un+1
j − un

j + λ(fn+1
j+ 1

2
− fn+1

j− 1
2
) = 0, (41)

implies:

U (un+1
j )−U (un

j )+ λ(Fn+1
j+ 1

2
− Fn+1

j− 1
2
) = −En+1

j − E B E
j , E B E

j > 0. (42)

In this case, the entropy inequality is always satisfied, even if an EC flux is used in space. The expressions for E B E
j

and E F E
j can be found in [8, section 7].

3.4.2. Positivity
We showed in Sections 3.2 and 3.3 that despite the fact that the entropy variables are undefined in the limit

ρk → 0, the EC flux is well-defined and that the ES flux remains well-defined if the averaged partial densities are
properly chosen (we show a similar result for high-order TecNO schemes in Section 4.2). This does not guarantee
that the resulting scheme will not produce negative densities and/or negative pressures. In the one-dimensional
test problems, the first order semi-discrete ES scheme fortunately did not produce negative densities or pressure
but the high-order TecNO scheme (Section 4.2) systematically did. In the original setup of the two-dimensional
shock-bubble interaction problem [49,50], the first-order scheme had the same issue.

There are schemes which are conservative, entropy stable and can preserve the correct sign of density and
pressure. The Godunov scheme as well as the Lax–Friedrichs scheme qualify if an appropriate CFL condition
is met [51]. Note also the recent work of Guermond et al. [52,53]. A common trait of these schemes is that they
take root in the notion of a Riemann problem and the assumption that there exists a solution satisfying all entropy
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inequalities. These schemes also require an algorithm capable of computing the maximum speed of propagation
(or an upper bound) for the Riemann problem at each interface. One such algorithm is discussed in Guermond &
Popov [54]. We could in principle adopt a hybrid approach where these schemes are used in areas where ours fails
to maintain positive densities and pressure. Whether this can effectively be accomplished is left for future work.

3.4.3. Construction for thermally perfect gases
Here we briefly discuss the construction of an ES scheme in the case where the specific heats are not constant

but functions of temperature. In this configuration, the specific internal energies and entropies are defined as:

ek := e0k +

∫ T

0
cvk(τ )dτ, sk :=

∫ T

0

cvk(τ )
τ

dτ − rk ln ρk .

The structure that ES schemes build on [31,32] is still present. The multicomponent system still admits an additional
conservation equation for the thermodynamic entropy of the mixture ρs and (U, F) = (−ρs, −ρus) is a valid
entropy pair for ρk > 0, T > 0. In practice, the specific heats are represented using polynomial interpolation:

cvk := ck0 +

P∑
j=1

ck j T j ,

where ck j , 0 ≤ j ≤ P are constants. This gives:

ek = e0k + ck0T +
p∑

j=1

ck j

j + 1
T j+1, sk = ck0 ln T +

P∑
j=1

ck j

j
T j
− rk ln ρk .

The expressions of the entropy variables and potential functions remain unchanged. Regarding the construction of
the EC flux, we have for 1 ≤ k ≤ N :

[v1,k] =
[

1
T

(
gk −

u2

2

)]
=

[
ek

T
− sk

]
−

[
u2

2T

]
= e0k

[
1
T

]
− ck0[ln T ]−

P∑
j=1

ck j

j( j + 1)
[T j ]+ rk[ln ρk]−

u2

2

[
1
T

]
−

1
T

u[u]
(43)

For a given quantity a, let us define the product operator a× = aLaR . For a ̸= 0, we have the following identity:

[a] = −a×
[

1
a

]
It can be easily showed, by induction for instance, that for j ≥ 1, there exists an averaging operator f j (a), consistent
with a j−1, such that [a j ] = j f j (a)[a] ( f1(a) = 1, f2(a) = a, f3(a) = (2/3)a a + (1/3)a2 and so on using product
rules). Eq. (43) can therefore be rewritten as:

[v1,k] = e0k

[
1
T

]
− ck0[ln T ]+

P∑
j=1

ck j

( j + 1)
( f j (T )T×)

[
1
T

]
+ rk[ln ρk]−

u2

2

[
1
T

]
−

1
T

u[u]

=

[
1
T

](
e0k + ck0

1
(1/T )ln

+

P∑
j=1

ck j

( j + 1)
( f j (T )T×)−

u2

2

)
+ [ρk]

rk

ρln
k
− [u]

(
1
T

)
u

Repeating the procedure outlined in Section 3.2, we obtain an EC flux:

f1,k = ρ
ln
k u,

f2 =
1

1/T

( N∑
k=1

rkρk

)
+ u

N∑
k=1

f1,k, (44)

f3 =

N∑
k=1

(
e0k + ck0

1
(1/T )ln

+

P∑
j=1

ck j

( j + 1)
( f j (T )T×)−

1
2

u2

)
f1,k + u f2.
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which is consistent ( f j (T )T× is consistent with T j+1) and differs from the expression we obtained in the calorically
perfect gas case (Eq. (26)) in the total energy component only.

We will not go into the details of the upwind dissipation operator. Barth’s eigenscaling theorem applies because
H still symmetrizes A from the right. Therefore the scaling matrix exists (T 2

= R−1 H R−T ) and the dissipation
operator constructed in Section 3.3 can be constructed for thermally perfect gases as well.

3.4.4. Total mass form
Instead of solving the conservation equations for the N partial densities ρk , one might want to solve for the

conservation of the total density ρ and N-1 partial densities. The state and flux vectors are then:

ũ :=
[
ρ ρ2 . . . ρN ρu ρet

]T
, f̃ :=

[
ρu ρ2u . . . ρN u ρu2

+ p (ρet
+ p)u

]T
.

The entropy variables in this configuration can be easily obtained using a chain rule:

ṽT
= −

∂ρs
∂ũ
= −

∂ρs
∂u

(
∂ũ
∂u

)−1

= vT
(
∂ũ
∂u

)−1

= vT
(
∂u
∂ũ

)
ũ and u only differ in the first component, ρ1 = ρ −

∑N
k=2 ρk therefore:

∂u
∂ũ
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 . . . −1 0 0
1 0 0 0

. . . 0 0 0
0 0 . . . 1 0 0
0 0 . . . 0 1 0
0 0 . . . 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, ṽ =

1
T

[
(g1 −

1
2 u2) (g2 − g1) . . . (gN − g1) u −1

]T
.

The corresponding potential functions are unchanged because:

ṽ · f̃ = vT
(
∂u
∂ũ

)(
∂ũ
∂u

)
f = v · f, ṽ · ũ = vT

(
∂u
∂ũ

)(
∂ũ
∂u

)
u = v · u

Accordingly, an EC flux f̃EC for the total mass form can simply be obtained by mapping an EC flux in the first
form fEC:

f̃EC =

(
∂ũ
∂u

)
fEC .

Likewise, applying the same mapping to an ES flux f∗ in the first form given by:

f∗ = fEC − D[v]

where D is positive definite, results in a flux f̃∗ given by:

f̃∗ =
(
∂ũ
∂u

)
f∗ = f̃EC −

(
∂ũ
∂u

)
D[v] = f̃EC −

(
∂ũ
∂u

)
D

(
∂ũ
∂u

)T

[ṽ] = f̃EC − D̃[ṽ].

D̃ is positive definite by congruence therefore f̃∗ is entropy stable.

4. High-order discretizations

In this section, we are essentially interested in how the fundamental issues highlighted in the previous
sections manifest in a high-order setting. We examine two high-order ES formulations: TecNO schemes [19] and
Discontinuous Galerkin [55,56] (DG) schemes discretizing the entropy variables [14,57]. High-order ES schemes
are not limited to these two options (formulations based on Summation-By-Parts operators [17,18] for instance are
actively being developed), but the issues their formulation raises are no different.

4.1. Discontinuous Galerkin

In [57], Hughes et al. showed, under the assumption of exact numerical quadrature, that continuous finite element
solutions to the compressible Navier–Stokes equations become consistent with the entropy equation when the



16 A. Gouasmi, K. Duraisamy and S.M. Murman / Computer Methods in Applied Mechanics and Engineering 363 (2020) 112912

entropy variables are discretized instead of conservative variables. Furthermore, they showed that with suitably
defined dissipation operators, the discrete solution satisfies the Clausius–Duhem inequality.

For Discontinuous Galerkin discretizations of the Compressible Euler Equations, the same result follows if
ES fluxes are used. Yet, the formulation of ES DG schemes by Barth [14] does not proceed along these lines.
The entropy variables are discretized but entropy-stable fluxes are defined in a different way. This is discussed in
Appendix C.

The fact that the entropy variables are undefined in the limit ρk → 0 poses a daunting problem, unless the flow
configuration is such that one can expect ρk > 0 at all times. A way around this issue (other than not discretizing
the entropy variables) has not been found by the authors. There might be other entropy functions for which the
corresponding entropy variables are well-defined in this limit. However, in the context of the multicomponent
Navier–Stokes equations (including viscous stresses, heat conduction, multicomponent diffusion), the a priori
entropy stability resulting from discretizing the entropy variables might be lost [57,58].

4.2. TecNO schemes

TecNO schemes (Fjordholm et al. [19]) are high-order entropy-stable finite volume schemes that combine the
high-order EC flux formulation of LeFloch et al. [15], the stencil selection procedure of ENO schemes [59,60] and
entropy-stable dissipation operators [1,16].

The dissipation term of a first order ES flux typically takes the form:

D[v] = (RT )|Λ|(RT )T [v],

where R is the matrix of right eigenvectors of A and T is a scaling matrix. The reconstruction used by TecNO
schemes is motivated by the sign property of the ENO reconstruction. It was shown [61] that for any vector w ∈ RN ,
the ENO reconstruction is such that:

⟨w⟩ = B[w], B = diag([b0, . . . , bN−1]), bi ≥ 0,

where ⟨w⟩ and [w] are the reconstructed and initial jumps, respectively. Let w be such that [w] = (RT )T [v], then
the dissipation operator D̃[w] = (RT )|Λ| ⟨w⟩ is ES because:

(RT )|Λ| ⟨w⟩ = (RT )|Λ|B[w] = (RT )(|Λ|B)(RT )T [v]

|Λ|B is a positive diagonal matrix, therefore the high-order dissipation operator D̃[w] is ES. The TecNO approach
does require the knowledge of the scaled eigenvectors (RT ). If the dissipation operator is only known in the form:

D[v] = R|Λ|T 2 RT [v],

then choosing w such that [w] = (T 2 RT )[v] for the ENO reconstruction will result in a high-order dissipation
operator:

D̃[w] = R|Λ| ⟨w⟩ = R(|Λ|BT 2)RT [v].

|Λ|, B and T 2 are all symmetric and at least positive semi-definite, however their product is no necessarily positive
semi-definite. If the squared scaling matrix is diagonal then entropy stability is preserved. In the general case of
a block-diagonal scaling matrix, entropy stability is no longer ensured. The same problem would arise if w was
chosen such that [w] = RT [v] (the question would be whether (|Λ|T 2 B) is positive definite).

If the dissipation operator is expressed according to Eq. (32) with the pseudo-scaling matrix T given by Eq. (31),
the vector of reconstructed variables w such that = [w] = (RT )T [v] will have as many components as the number
of rows of T . For N > 2, the number of rows of T grows as O(N 2), so for a large enough N , one might prefer
working with T instead of T and avoid having to reconstruct too many variables.

In Section 3.3, we showed that the dissipation term expressed as R|Λ|T 2 RT is well defined in the limit ρk → 0
provided that ρ∗k = ρ

ln
k . This was possible because one could extract from T 2 a diagonal matrix R (see Eq. (33)) of

partial densities. The TecNO algorithm requires the isolated evaluation of the scaled entropy variables defined by
the jump relation [w] = (RT )T [v] or [w] = (RT )T [v]. The matrix R that was extracted from the squared scaling
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matrix, might not be extracted from T or T without leaving 1/ρ∗k terms behind. However, R1/2 can be extracted
from the pseudo-scaling matrix T and since:

[ln(ρk)] = [2 ln(
√
ρk)] = 2

[
√
ρk]

(
√
ρk)ln

,

it can be shown that [w] = (RT )T [v] is well-defined in the limit ρk → 0, provided that ρ∗k = ((
√
ρk)ln)2. The

decomposition:

T 2
= R1/2T̃ 2(R1/2)T , T̃ 2

=
1
γ r

⎡⎢⎢⎢⎢⎢⎢⎣
(γ − 1)Y1 + γ r2/r1Y2 −

√
Y1Y2 0 0

−
√

Y1Y2 (γ − 1)Y2 + γ r1/r2Y1 0 0

0 0 1
2 0

0 0 0 1
2

⎤⎥⎥⎥⎥⎥⎥⎦ , (45)

suggests that a TecNO reconstruction based on the scaling matrix T would still be defined in the limit with the
same averaging. Note that this average is not compatible with the stationary contact preservation condition (35) we
derived in Section 3.3. That is because Eq. (35) requires ρ∗k = ρ

ln
k .

5. Numerical experiments

In this section, we present and discuss numerical results on 1D and 2D test problems involving interfaces and
shocks. A 3D formulation of the scheme (entropy variables, EC flux, ES flux) is provided in Appendix B.

In the 1D problems, the first-order finite volume scheme with the ES flux in space and forward Euler in time
with a CFL of 0.3 on three grids (100, 300, and 1000 cells, respectively) was applied. All the figures in the next
three subsections use the same legend as Fig. 1-(a). A fourth-order TecNO scheme is used in the 2D problem
(Section 5.4).

5.1. Moving interface

The first test problem is the advection of a contact discontinuity (constant velocity and constant pressure)
separating two different species. The initial conditions are given by:{

(ρ1, ρ2, u, p) = (0.1, 0.0, 1.0, 1.0), 0 ≤ x ≤ 0.5,
(ρ1, ρ2, u, p) = (0.0, 1.0, 1.0, 1.0), 0.5 < x ≤ 1.

with γ1 = 1.4, γ2 = 1.6, cv1 = cv2 = 1. The velocity and pressure profiles at t = 0.022s and t = 0.1s are shown
in Figs. 1 and 2. These profiles show overshoots and undershoots that are typically observed with conservative
schemes (see Fig. 4 in Abgrall & Karni [38] for instance). These anomalies are often termed oscillations in the
literature [38,39,49,62,63]. Upon closer examination, we can see three wave packets propagating at different speeds.
The one moving to the left has the fastest propagation speed, roughly −3. The remaining two are moving to the
right with propagation speeds of roughly 1 (the speed of the contact) and 2. From Fig. 3, which shows the acoustic
eigenvalues u ± a, it clearly appears that the first and third wave packets are acoustic.

Fig. 4 shows the total entropy ρs = ρ1s1 + ρ2s2 profiles at t = 0.02s and t = 0.1s. The wave structure of the
pressure and velocity anomalies is more apparent, and we can see that each wave is carrying an spurious increase
in entropy. Fig. 6 shows the evolution of the total entropy over time (the contributions from the boundaries were
removed). This shows that the anomalies observed do not violate entropy stability. On the contrary, it appears that
inappropriate production of entropy is the issue. Additionally, we find Appendix A.2 that these anomalies are still
present when the upwind dissipation operator is discarded and the Backward Euler scheme is used to ensure entropy
stability (recall the discussion in Section 3.4.1 and Eq. (42)). In the same vein, we find that these anomalies do not
violate a minimum principle of the specific entropy [33] (see Fig. 5).

That these anomalies are not linked to entropy stability or the minimum entropy principle does not come as
a surprise considering that they were already observed with the Godunov scheme [38,39], which is both entropy
stable and satisfies a minimum entropy principle [51].
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Fig. 1. Velocity profiles for the moving interface problem.

Fig. 2. Pressure profiles for the moving interface problem.

It is important to understand that these anomalies are intrinsic to multicomponent flows. There are no such
anomalies on moving contacts in the compressible Euler equations Appendix A.1. Furthermore, these anomalies
are produced by first-order schemes. They are therefore different than the oscillations typically observed with high-
order schemes when discontinuous solutions are sought. Intrigued readers are strongly encouraged to read early
studies of this problem [38,38,39].

For this problem and the following, high-order TecNO schemes were found to produce non-physical values of
density and pressure.

5.2. Two-species shock-tube problem

We simulate a shock-tube problem with two species. The initial conditions are given by:{
(ρ1, ρ2, u, p) = (1, 0, 0, 1), 0 ≤ x ≤ 0.5,
(ρ1, ρ2, u, p) = (0, 0.125, 0, 0.1), 0.5 < x ≤ 1.0,

with γ1 = 1.4, γ2 = 1.6 and cv1 = cv2 = 1. The exact solution to the multicomponent shock-tube problem is
almost the same as the exact solution in the single-component case. The composition of the gas changes across the
contact discontinuity but does not change across rarefaction waves and shock waves [64].
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Fig. 3. Acoustic eigenvalues for the moving interface problem at t = 0.1 s.

Fig. 4. Entropy (ρs = ρ1s1 + ρ2s2) profiles for the moving interface problem.

Fig. 5. Specific entropy (s = Y1s1 + Y2s2) profiles for the moving interface problem.
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Fig. 6. Total entropy over time for the moving interface problem.

Figs. 7(a)–(d) show the velocity, pressure, total density and specific heat ratio profiles at t = 0.2s. There is a
good agreement with the exact solution, and we do not observe pressure and velocity oscillations around the moving
contact which separates the two species.

5.3. Shock-interface interaction

We simulate a test problem from Quirk & Karni [39] which consists of a shock tube filled with air, where a
shock wave moves to the right and eventually meets a stationary bubble of helium at pressure equilibrium. The
initial conditions are given by:⎧⎪⎪⎪⎨⎪⎪⎪⎩

(ρ1, ρ2, u, p) = (1.3765, 0, 0.3948, 1.57), 0 ≤ x ≤ 0.25, Post-shock, air,
(ρ1, ρ2, u, p) = (1., 0, 0., 1.), 0.25 ≤ x ≤ 0.4, Pre-shock, air,
(ρ1, ρ2, u, p) = (0., 0.139, 0., 1.), 0.4 ≤ x ≤ 0.6, Pre-shock, helium bubble,
(ρ1, ρ2, u, p) = (1., 0, 0., 1.), 0.6 ≤ x ≤ 1, Post-shock, air.

For air cv1 = 0.72, γ1 = 1.4. For helium cv2 = 2.42, γ2 = 1.67. In [50], this problem is used to highlight the
better behavior of Karni’s non-conservative scheme [39] over a conservative scheme using the Roe flux (see Fig. 2
in [50]). In a similar spirit, we compared our semi-discrete ES scheme with the Roe scheme. Fig. 8 shows the
pressure profile at t = 0.35s obtained with each scheme. As expected, the solution with Roe’s scheme is rife with
oscillations unlike the solution with the present ES scheme which is free of these oscillations. The cause of this
improvement is not entropy stability, but the property of preserving stationary contact discontinuities. Fig. 9 shows
the pressure profile before the right-moving shock a couple of instants before it meets the helium bubble. Roe’s
scheme does not preserve stationary contacts and therefore produces pressure anomalies which eventually pollute
the solution at t = 0.35 (Fig. 8). This problem is a good illustration of the importance of treating interfaces properly
in the simulation of multicomponent compressible flows. The results also suggest that the current ES scheme will
not produce oscillations on shock-interface interaction problems if the interface is stationary. This encouraged us
to consider the next problem.

5.4. Shock-bubble interaction

A test case that is commonly used in the development of numerical schemes for compressible multicomponent
flows [49,50,63,65] is the interaction of a shock wave with a cylindrical gas inhomogeneity. This problem is a two-
dimensional analog of the three-dimensional shock-induced mixing concept proposed by Marble et al. [66] in the
context of supersonic scramjet design. This problem is also used in experimental and computational investigations
of the Richtmyer–Meshkov instability [67,68].
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Fig. 7. Solution at t = 0.2 s for the two-species shock tube problem.

Fig. 8. Pressure profiles for the 1D shock-bubble interaction problem at t = 0.35 s.
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Fig. 9. Pressure profiles for the 1D shock-bubble interaction problem before the shock reaches the bubble, t = 0.069 s.

Validating the present ES scheme against experimental data is beyond the scope of the present work. In this
section, we are essentially interested in the ability of the scheme to simulate the physics relevant to this classic
problem. For this purpose, we tried to reproduce the results of Marquina & Mulet [49]. The computational domain
(ABCD) is shown in Fig. 10. A Mach MS = 1.22 shock wave, positioned at x = 275 mm, moves to the left
through quiescent air (species 1, γ1 = 1.4 and r1 = 0.287 103 J. kg.−1.K−1) and eventually meets a cylindrical
bubble, centered at (x, y) = [225, 0] mm, filled with helium contaminated with 28% of air (γ2 = 1.647, r2 =

1.578 103 J. kg−1.K−1). The flow is assumed to be symmetric about the shock-tube axis (BC), therefore only the
upper half of the physical domain is considered. Reflecting boundary conditions are applied on the top (AD) and
bottom (BC) boundaries. The boundary conditions upstream (AB) and downstream (CD) the shock are not crucial
in this problem [39] so we simply extrapolate the flow, as in [49].

Since the current scheme is unable to guarantee positive partial densities and pressure, the initial conditions
from [49] had to be modified. We set:

Region I: (ρ1, ρ2, u, v, p) = (δρ, 1.225(r1/r2)− δρ, 0., 0., 101325),
Region II: (ρ1, ρ2, u, v, p) = (1.225− δρ, δρ, 0., 0., 101325),

Region III: (ρ1, ρ2, u, v, p) = (1.6861− δρ, δρ, −113.5243, 0., 159060).

with δρ = 0.03 (units for density, velocity and pressure are kg/m3, m/s and Pa, respectively). This setup differs from
the original in two aspects. First, the composition of the gas in regions I, II and III will not be the same. Second,
regions I and II are in pressure and temperature equilibrium in the original setup whereas in ours, temperature
equilibrium is lost. These differences make quantitative comparisons, notably with the experimental data of Haas
& Sturtevant [69], difficult to carry out. However, we expect the physics to remain similar qualitatively (see Picone
& Boris [70] who studied this problem using a single gas flow model).

For this simulation, we used a 4-th order TecNO scheme in space with a 4-th order explicit Runge–Kutta scheme
in time. We used a 4000 × 400 grid and set the CFL number to 0.3. Fig. 11 shows pseudo-Schlieren images of
the density gradients at different times after the shock reached the bubble. These are in good qualitative agreement
with those produced by Marquina & Mulet, Fig. 7 in [49] (see also Quirk & Karni [50], Fig. 9). We refer to these
two references for a detailed discussion of the physical mechanisms at work.

In Fig. 12-(a), we show an x–t diagram of the position of the key features of the shock-bubble interaction. These
features are explained in Fig. 12-(b). The positions of these features are obtained by looking at inflection points
of horizontal sections of the shading function φ used in Fig. 11. The upstream bubble interface is tracked on a
section at a height 20 mm from the axis. The incident shock is tracked on a section at 5 mm from the top wall. The
remaining features are tracked on a section along the symmetry line. The x–t diagram from Marquina & Mulet,
Fig. 5 in [49], shows similar trends. The mean velocities of these features are calculated from their visually straight
trajectories using linear regression, and displayed in Table 1.
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Fig. 10. Computational domain (not to scale) for the 2D Shock-bubble interaction problem. Only the top half of the domain (ABCD) is
simulated. Lengths in millimeters. Region I: Bubble. Region II: Pre-shock. Region III: Post-shock.

Fig. 11. Pseudo-Schlieren pictures for the shock-bubble interaction problem. φ = exp(−ψ |∇ρ|/|∇ρ|max), ψ = 10Y1 + 150Y2.
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Fig. 12. (a) x–t diagram of the key features explained in (b); (b) VS: incident shock, VR: refracted shock VT: transmitted shock, Vui:
upstream border of the bubble, Vdi: downstream border of the bubble, Vj: air jet head.

Table 1
Velocities in m/s of the features explained in Fig. 12. The time intervals in µs for computing each
velocity are: VS [3.66, 62.64], VR [3.66, 52.81], VT [52.81, 141.26], Vui1 [3.66, 141.26], Vui2
[146.18, 254.29], Vdi [141.26, 254.29], Vj [146.18, 254.29].

VS VR VT Vui1 Vui2 Vdi Vj

Gouasmi et al. 422 954 377 185 105 138 228
Marquina and Mulet [49] 414 943 373 176 111 153 229

6. Conclusions

We formulated entropy-stable schemes for the multicomponent compressible Euler equations. This effort built
on the theoretical ground laid out by Chalot et al. [31] and Giovangigli [32] and followed a procedure pioneered by
Tadmor [1]: we first derived a baseline EC flux and complemented it with an entropy-producing upwind dissipation
operator [16]. We showed that in the limit ρk → 0, the EC flux is well-defined. This also holds for the upwind
dissipation operator and the TecNO reconstruction provided that the averaged partial densities are well-chosen.
Unfortunately, this does not prevent the scheme from producing negative values of partial densities and pressure.
We also derived a condition on the averaged state of the dissipation matrix so that the ES scheme can exactly
preserve stationary contact discontinuities.

It is a well-known issue that conservative schemes are subject to pressure oscillations in moving interface
configurations. Numerical experiments showed that the ES scheme we constructed is no exception. We stress that
these anomalies, which are not present in the single component case, violate neither entropy stability nor a minimum
principle of the specific entropy [33]. The remedies to the pressure oscillations problem typically consist in giving up
on conservation of total energy [38,39,62,71], which can impair the ability of the scheme to properly capture shocks.
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A compromise between ensuring entropy stability and the proper treatment of moving interfaces could perhaps be
achieved with the EC/ES schemes for non-conservative hyperbolic systems developed by Castro et al. [29], even
though non-conservative schemes have their own lot of issues [72,73].

We remain careful to not make any peremptory statement about ES schemes. This work highlighted issues
associated with an ES formulation that is more of a default choice than a well-grounded one. The choices of
EC flux and dissipation operator are not unique and have to be explored in more depth. Ultimately, we hope that
this effort will encourage further work on the proper way to manage entropy locally in a discrete field.
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Appendix A. Additional results — Moving interface problem

A.1. Single component case

Here we present numerical results for a moving contact discontinuity in the compressible Euler equations. The
initial conditions are given by:{

(ρ, u, p) = (0.1, 1., 1.), −1.0 ≤ x ≤ 0.0,
(ρ, u, p) = (1., 1., 1.), 0.0 < x ≤ 1.0,

with γ = 1.4 and cv = 1. The anomalies observed in the multicomponent case are not present. The velocity and
pressure remain constant at all times. (See Fig. A.13.)

A.2. Conserving entropy in space, producing entropy in time

The implicit scheme did not converge in the original setup (most likely due to the generation of negative
densities/pressure). We therefore considered a different setup, with non-zero partial densities, for which the pressure
oscillations problem is still present.{

(ρ1, ρ2, u, p) = (0.3, 0.15, 1., 1.), 0 ≤ x ≤ 0.5,
(ρ1, ρ2, u, p) = (0.15, 1., 1., 1.), 0.5 < x ≤ 1.0,

with γ1 = 1.4, γ2 = 1.6 and cv1 = cv2 = 1. A grid of 200 cells is used. Fig. A.14 shows the pressure profiles
obtained with an EC flux and an ES flux in space, respectively, for two different CFL numbers. In the first case,
the entropy production of the scheme only comes from the stabilization of the Backward Euler time scheme, which
grows with ∆t . The high frequency oscillations observed are typically observed when too little dissipation is added
to EC schemes [13,74]. In the event that the scheme is EC at the fully discrete level (see [13] for an example),
these oscillations will be present but will not increase in magnitude over time. This is not desirable.

The main conclusion we draw is that the pressure anomalies remain present when the upwind dissipation typically
used in space is replaced by the dissipation of Backward Euler. The magnitude of the pressure anomalies is higher
when both the interface flux and time scheme are ES.

Appendix B. Three-dimensional version

The three-dimensional multicomponent Euler equations are given by:

∂u
∂t
+
∂f1

∂x1
+
∂f2

∂x2
+
∂f3

∂x3
= 0. (B.1)
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Fig. A.13. Solution for the single-component moving contact discontinuity at t = 0.6 s. Same legend as in Fig. 1(a).

Fig. A.14. Pressure profiles at t = 0.1 s for a moving interface with BE in time and either an EC flux or an ES flux in space.
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The state vector u and flux vectors f1, f2 and f3 are defined by:

u =
[
ρ1 . . . ρN ρu ρv ρw ρet

]T
,

f1 =
[
ρ1u . . . ρN u ρu2

+ p ρuv ρuw (ρet
+ p)u

]T
,

f2 =
[
ρ1v . . . ρNv ρuv ρv2

+ p ρvw (ρet
+ p)v

]T
,

f3 =
[
ρ1w . . . ρNv ρuw ρvw ρw2

+ p (ρet
+ p)w

]T
.

The conservation equation for entropy writes:
∂U
∂t
+
∂F1

∂x1
+
∂F2

∂x2
+
∂F3

∂x3
= 0, U = −ρs, F1 = −uρs, F2 = −vρs, F3 = −wρs. (B.2)

The vector of entropy variables is:

v =
1
T

[
g1 −

1
2 (u2
+ v2
+ w2) . . . gN −

1
2 (u2
+ v2
+ w2) u v w −1

]
. (B.3)

The potential flux in space U is unchanged. There are now three spatial potential functions to work with. They are
given by:

F1 = v · f1 − F1 =

N∑
k=1

R
mk
ρku, F2 = v · f2 − F2 =

N∑
k=1

R
mk
ρkv, F3 = v · f3 − F3 =

N∑
k=1

R
mk
ρkw. (B.4)

It can be easily shown that an entropy-conservative flux across an interface of normal n = (n1, n2, n3), denoted f∗
must satisfy:

[v] · f∗ = [n1F1 + n2F2 + n3F3].

Using the same method as in the 1D case, one obtains f∗ = [ f1,1 . . . f1,N f2 f3 f4 f5] with:

f1,k = ρ
ln
k un,

f2 =
n1

1/T

( N∑
k=1

rkρk

)
+ u

N∑
k=1

f1,k,

f3 =
n2

1/T

( N∑
k=1

rkρk

)
+ v

N∑
k=1

f1,k, (B.5)

f4 =
n3

1/T

( N∑
k=1

rkρk

)
+ w

N∑
k=1

f1,k,

f5 =

N∑
k=1

(e0k + cvk
1

(1/T )ln
−

1
2

u2 + v2 + w2) f1,k + u f2 + v f3 + w f4.

un = n1u + n2v + n3w is the velocity normal to the interface. The temporal Jacobian [32] is given by:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1
r1

0 ρ1
r1

u ρ1
r1
v

ρ1
r1
w

ρ1
r1

(et
1)

. . .
...

...
...

...
ρN
rN

ρN
rN

u ρN
rN
v

ρN
rN
w

ρN
rN

(et
N )

ρT + u2S1 uvS1 uwS1 u(ρT + S2)
ρT + v2S1 vwS1 v(ρT + S2)

ρT + w2S1 w(ρT + S2)
sym ρT (2k + cvT )+ S3.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

S1 =
∑

k

ρk

rk
, S2 =

∑
k

ρk

rk
(et

k), S3 =
∑

k

ρk

rk
(et

k)2

Next is the scaling matrix. Let An be the flux Jacobian in the normal direction:

An = n1
∂f1

∂u
+ n2

∂f2

∂u
+ n3

∂f3

∂u
.
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A general expression for the eigenvector matrix R such that An = RΛR−1 is the following:

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 Y1 Y1
. . .

...
...

...
...

1 0 0 YN YN

u . . . u u + an1 u − an1
v . . . v rI rII v + an2 v − an2
w . . . w w + an3 w − an3

k − d1
γ−1 . . . k − dN

γ−1 ht
+ una ht

− una

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Λ = diag(
[
un . . . un un un + a un − a

]
),

where rI, rII ∈ R4×1 are such that:

rI, rII ∈ span
{

e1 =

⎡⎢⎢⎣
0
−an3
an2

−a(n3v − n2w)

⎤⎥⎥⎦ , e2 =

⎡⎢⎢⎣
−an3

0
an1

−a(n3u − n1w)

⎤⎥⎥⎦ , e3 =

⎡⎢⎢⎣
−an2
an1
0

−a(n2u − n1v)

⎤⎥⎥⎦}
,

and rank(rI, rII) = 2. If n1 ̸= 0, take (rI, rII) = (e3, e2). The squared scaling matrix is given by:

T 2
= R−1 H R−T

=
ρ

γ r
diag(

[
T 2Y T 2N 1/2 1/2

]
), (B.6)

where T Y
= T Y (T Y )T

∈ RN×N is the same as in the 1D setting, and T 2N
∈ R2 is given by:

T 2N
=

1
n2

1

[
n2

1 + n2
3 −n2n3

−n2n3 n2
1 + n2

2

]
.

If n2
2 + n2

3 = 0, then T 2N
= I2×2, otherwise T 2N

= T N (T N )T with:

T N
=

1

n1

√
n2

2 + n2
3

[
−n3 n1n2

n2 n1n3

]
.

If n1 = 0, then if n2 ̸= 0, take (rI, rII) = (e3,−e1). Eq. (B.6) holds with:

T 2N
=

1
n2

2

[
n2

2 + n2
3 −n1n3

−n1n3 n2
2 + n2

1

]
.

Since n1 = 0, this simplifies to T 2N
= diag([1 + (n3/n2)2 1]) and T N

= diag([
√

1+ (n3/n2)2 1]). If n1 = 0
and n2 = 0, then n3 ̸= 0. In this final case, take (rI, rII) = (e2, e1). This leads to T 2N

= n2
3diag([1 1]) and

T N
= n3diag([1 1]).

In each case, we can write T 2
= T T T with:

T =
√
ρ

γ r
diag(

[
T Y T N 1/

√
2 1/

√
2
]
).

The entropy-stable flux f∗ writes:

f∗ = fEC −
1
2

(RT )|Λ|(RT )T [v].

Appendix C. Some perspective on the fluxes of Tadmor and Barth

In Barth [14], the entropy variables are discretized but the entropy stability of an inviscid interface flux f∗ is
defined by the condition that f∗ produces more entropy than the so-called Symmetric Mean-Value (SMV) flux he
proposed. This flux actually has two distinct expressions [14,75]. In chronological order, they are given by:

fSMV,I =
1
2

(f(vL )+ f(vR))−
1
2

(∫ 1

0
(1− θ )(|A(v(θ ))|H + |A(v(θ ))|H )dθ

)
[v],
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fSMV,II =
1
2

(f(vL )+ f(vR))−
1
2

(∫ 1

0
|A(v(θ ))|H dθ

)
[v],

v(θ ) = vL + θ [v], v(θ ) = vR − θ [v], |A|H = |A|H = R|Λ|RT .

Barth [14,75] defines an entropy-stable flux by the condition that it produces more entropy than the SMV flux:

[v] · f∗ ≤ [v] · fSMV.

The SMV flux is entropy stable, therefore it does not define a genuine threshold for entropy stability. Tadmor [1]
defines an entropy-stable flux by comparison with an entropy-conservative flux fEC he derived. This condition writes:

[v] · f∗ ≤ [v] · fEC = [F], fEC =

∫ 1

0
f(v(θ ))dθ.

Using integration by parts, this flux can be cast in viscosity form [1]:

fEC = (θ −
1
2

)f(v(θ ))
⏐⏐⏐⏐θ=1

θ=0
−

∫ 1

0
(θ −

1
2

)
d

dθ
f(v(θ ))dθ

=
1
2

(f(vL )+ f(vR))−
1
2

(∫ 1

0
(2θ − 1)A(v(θ ))H (v(θ ))dθ

)
[v].

Let QSMV and QEC be the matrices such that:

fEC =
1
2

(f(vL )+ f(vR))−
1
2

QEC [v], fSMV =
1
2

(f(vL )+ f(vR))−
1
2

QSMV [v].

Using:

[v] · AH [v] = [v] · RΛRT [v] ≤ [v] · R|Λ|RT [v] = [v] · |A|H [v],

it can be easily shown that:

[v] · QSMV,I I [v] ≥ [v] · QEC [v] → [v] · fSMV,II ≤ [v] · fEC.

Note that a flux similar to fSMV,II was hinted at by Tadmor (Example 3.2 in [76]). Noting that v(θ ) = v(1− θ ), and
applying the variable change θ ← 1− θ to half of QEC leads to another expression for QEC :

QEC =

∫ 1

0
(θ −

1
2

)A(v(θ ))H (v(θ ))dθ +
∫ 1

0
(
1
2
− θ )A(v(θ ))H (v(θ ))dθ,

which resembles QSMV,I . From here, it is not clear whether

[v] · QEC [v] ≤ [v] · QSMV,I [v],

which would imply:

[v] · fSMV,I ≤ [v] · fEC.

In a later publication [77], Barth defines an EC/ES condition:

[v] · (f∗ − f(v(θ ))) ≤ 0, ∀θ ∈ [0 1], (C.1)

which is slightly different from Tadmor’s:

[v] · f∗ − [F] ≤ 0. (C.2)

However using the definition of the potential function F :

∂F
∂v

T

= f

and a corollary of the fundamental theorem of calculus:

[F] = [v] ·
(∫ 1

0

∂F
∂v

T

(v(θ ))dθ
)
.
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Tadmor’s condition (C.2) can be rewritten as:∫ 1

0
[v] · (f∗ − f(v(θ )))dθ ≤ 0, (C.3)

which is the requirement that some path-integral is negative. Barth’s condition (C.1) is the more stringent
requirement that the integrand in (C.3) is negative.
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